skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Lin, Fan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Earthquakes in continental regions overwhelmingly occur in the crust where low pressure and temperature promote brittle failure in response to tectonic stress. In rare cases, primarily in the thickened lithosphere near the Himalayas and Tibet, continental earthquakes occur in the uppermost mantle, perhaps implying an abnormally deep brittle‐ductile transition zone created by relatively low temperatures (≲600°C) and the increased strength of olivine‐rich mantle rocks. Here we present evidence for nine mantle earthquakes—only four of which were previously recognized—along the edge of the Wyoming Craton in the western U.S. Eight of the nine earthquakes occurred >15 km beneath the Moho where temperatures are likely above 700°C. We infer a mixture of brittle and ductile (thermal runaway) source processes facilitated by elevated strain rates from regional or edge‐driven mantle convection, which is thought to be a primary force behind crustal seismicity in the Intermountain West. 
    more » « less
  2. Abstract LAB2022 is a new temporary array consisting of 273 geophones that was deployed in the Los Angeles basin for one month during the summer of 2022. The array was designed to improve the 3D seismic velocity model of the basin through passive seismic imaging, which is crucial for both earthquake hazard assessment and the understanding of the region’s tectonic evolution. The sensors are 3C 5 Hz Zland and Smart Solo instruments. The data has been archived at the EarthScope SAGE Data Management Center and will be publicly available in summer 2025. 
    more » « less
  3. Abstract We apply ambient noise tomography to a seismic array from the Trans‐Haiti project to obtain a 2‐D shear wave velocity (Vs) across Haiti. We perform multi‐component noise cross‐correlation, measure Rayleigh wave phase velocity and its horizontal‐to‐vertical amplitude ratio (H/V) between periods of 3–18 s, and jointly invert both measurements into Vs for the crustal structures of Haiti. Both H/V and phase velocity measurements exhibit consistent patterns related to the geologic units. Sedimentary basins—CSE and Plateau Central basins—show higher H/V values, while mountain areas—Massif de la Selle, Chaine des Matheux, Montagnes Noires and Massif de Nord—exhibit lower H/V. Regarding phase velocity, higher velocities are observed in northern and southern Haiti, likely reflecting the thinner crust compared to the thicker crust showing lower velocities in the central part. While our Vs model is consistent with previous model that suggested thinner crustal thickness in the northern and southern Haiti, with thickening in the center, the Moho interface in the central domain might be shallower than previously thought. 
    more » « less
  4. Abstract This study presents a new velocity model for the Salt Lake basin (SLB) in Utah, determined using data from permanent and temporary seismic stations located on top of the basin in the Salt Lake Valley (SLV) and nearby. A three‐dimensional (3D) velocity model for the SLB is needed for accurate predictions of future damaging earthquake ground shaking in the heavily urbanized SLV, including Salt Lake City. The SLB part of the Wasatch Front community velocity model (WFCVM) currently serves this purpose. However, the current WFCVM is based primarily on gravity and borehole data with relatively few seismic constraints below depths of 100 m. In this study we use the first peak of SLV receiver functions (RFs), which is sensitive to a strong impedance contrast at the base of a semi‐consolidated sediment layer. We jointly invert the RF waveform with Rayleigh wave ellipticity (H/V) and phase velocity measurements using the Markov chain Monte Carlo approach. Our new velocity model shows a greater combined thickness of unconsolidated and semi‐consolidated sediments, compared to the WFCVM, in the northeastern SLB between the west‐dipping East Bench fault section of the Wasatch fault and the antithetic West Valley fault zone to the west. We show that the new seismic velocity model explains the gravity patterns in the valley. The new velocity model from this study provides a basis for revising the SLB model in the WFCVM. 
    more » « less
  5. Abstract Numerical simulations of seismic wave propagation are crucial for investigating velocity structures and improving seismic hazard assessment. However, standard methods such as finite difference or finite element are computationally expensive. Recent studies have shown that a new class of machine learning models, called neural operators, can solve the elastodynamic wave equation orders of magnitude faster than conventional methods. Full waveform inversion is a prime beneficiary of the accelerated simulations. Neural operators, as end‐to‐end differentiable operators, combined with automatic differentiation, provide an alternative approach to the adjoint‐state method. State‐of‐the‐art optimization techniques built into PyTorch provide neural operators with greater flexibility to improve the optimization dynamics of full waveform inversion, thereby mitigating cycle‐skipping problems. In this study, we demonstrate the first application of neural operators for full waveform inversion on a real seismic data set, which consists of several nodal transects collected across the San Gabriel, Chino, and San Bernardino basins in the Los Angeles metropolitan area. 
    more » « less
  6. SUMMARY The recent developments in array-based surface-wave tomography have made it possible to directly measure apparent phase velocities through wave front tracking. While directionally dependent measurements have been used to infer intrinsic $$2\psi $$ azimuthal anisotropy (with a 180° periodicity), a few studies have also demonstrated strong but spurious $$1\psi $$ azimuthal anisotropy (360° periodicity) near major structure boundaries particularly for long period surface waves. In such observations, Rayleigh waves propagating in the direction perpendicular to the boundary from the slow to the fast side persistently show a higher apparent velocity compared to waves propagating in the opposite direction. In this study, we conduct numerical and theoretical investigations to explore the effect of scattering on the apparent Rayleigh-wave phase velocity measurement. Using 2-D spectral-element numerical wavefield simulations, we first reproduce the observation that waves propagating in opposite directions show different apparent phase velocities when passing through a major velocity contrast. Based on mode coupling theory and the locked mode approximation, we then investigate the effect of the scattered fundamental-mode Rayleigh wave and body waves interfering with the incident Rayleigh wave separately. We show that scattered fundamental-mode Rayleigh waves, while dominating the scattered wavefield, mostly cause short wavelength apparent phase velocity variations that could only be studied if the station spacing is less than about one tenth of the surface wave wavelength. Scattered body waves, on the other hand, cause longer wavelength velocity variations that correspond to the existing real data observations. Because of the sensitivity of the $$1\psi $$ apparent anisotropy to velocity contrasts, incorporating such measurements in surface wave tomography could improve the resolution and sharpen the structural boundaries of the inverted model. 
    more » « less
  7. SUMMARY Taiwan, one of the most active orogenic belts in the world, undergoes orogenic processes that can be elucidated by the doubly vergent wedge model, explaining the extensive island-wide geological deformation. To provide a clearer depiction of its cross-island orogenic architecture, we apply ambient noise tomography across an east–west linear seismic array in central Taiwan, constructing the first high-resolution 2-D shear velocity model of the upper crust in the region. We observe robust fundamental- and higher-mode Rayleigh waves, with the latter being mainly present in the western Coastal Plain. We develop a multimode double-beamforming method to determine local phase velocities across the array between 2- and 5-s periods. For each location, we jointly invert all available fundamental- and higher-mode phase velocities using a Bayesian-based inversion method to obtain a 1-D model. All 1-D models are then combined to form a final 2-D model from the surface to ∼10 km depth. Our newly developed 2-D model clearly delineates major structural boundaries and fault geometries across central Taiwan, thereby corroborating the previously proposed pro-wedge and retro-wedge models while offering insight into regional seismic hazards. 
    more » « less
  8. Abstract The crustal structure in south‐central Alaska has been influenced by terrane accretion, flat slab subduction, and a modern strike‐slip fault system. Within the active subduction system, the presence of the Denali Volcanic Gap (DVG), a ∼400 km region separating the active volcanism of the Aleutian Arc to the west and the Wrangell volcanoes to the east, remains enigmatic. To better understand the regional tectonics and the nature of the volcanic gap, we deployed a month‐long north‐south linear geophone array of 306 stations with an interstation distance of 1 km across the Alaska Range. By calculating multi‐component noise cross‐correlation and jointly inverting Rayleigh wave phase velocity and ellipticity across the array, we construct a 2‐D shear wave velocity model along the transect down to ∼16 km depth. In the shallow crust, we observe low‐velocity structures associated with sedimentary basins and image the Denali fault as a narrow localized low‐velocity anomaly extending to at least 12 km depth. About 12 km, below the fold and thrust fault system in the northern flank of the Alaska Range, we observe a prominent low‐velocity zone with more than 15% velocity reduction. Our velocity model is consistent with known geological features and reveals a previously unknown low‐velocity zone that we interpret as a magmatic feature. Based on this feature's spatial relationship to the Buzzard Creek and Jumbo Dome volcanoes and the location above the subducting Pacific Plate, we interpret the low‐velocity zone as a previously unknown subduction‐related crustal magma reservoir located beneath the DVG. 
    more » « less